JupyterLab¶
JupyterLab server for interactive data science and ML development with GPU support.
Overview¶
| Attribute | Value |
|---|---|
| Image | ghcr.io/atrawog/bazzite-ai-pod-jupyter:stable |
| Size | ~17GB |
| GPU | NVIDIA, AMD, Intel (auto-detected) |
| Port | 8888 (default) |
| Inherits | nvidia-python (PyTorch, CUDA) |
Quick Start¶
| Step | Command | Description | Recording |
|---|---|---|---|
| 1 | ujust jupyter config | Configure server | |
| 2 | ujust jupyter start | Start server | |
| 3 | ujust jupyter status | Check status |
Access JupyterLab at http://localhost:8888 after starting.
Lifecycle Commands¶
| Command | Description | Recording |
|---|---|---|
ujust jupyter config | Configure settings | |
ujust jupyter start | Start server | |
ujust jupyter status | Check status | |
ujust jupyter logs | View logs | |
ujust jupyter shell | Open shell | |
ujust jupyter restart | Restart server | |
ujust jupyter stop | Stop server | |
ujust jupyter delete | Remove config |
Workspace Directory¶
Mount your project files with the workspace option:
# Default workspace (~/jupyter)
ujust jupyter config
ujust jupyter start
# Custom workspace
ujust jupyter config --workspace-dir=/path/to/projects
ujust jupyter start
Multiple Instances¶
Run multiple JupyterLab servers for different projects:
# First instance (port 8888, ~/jupyter)
ujust jupyter config
ujust jupyter start
# Second instance (port 8889, different workspace)
ujust jupyter config -n 2 --port=8889 --workspace-dir=~/ml-project
ujust jupyter start -n 2
# Third instance (port 8890)
ujust jupyter config -n 3 --port=8890 --workspace-dir=~/data-analysis
ujust jupyter start -n 3
Pre-installed Libraries¶
The Jupyter pod inherits from nvidia-python and includes:
- PyTorch with CUDA support
- NumPy, Pandas, Scikit-learn
- Matplotlib, Seaborn, Plotly
- Transformers, Accelerate
- JupyterLab with extensions
GPU Verification¶
Inside a notebook:
import torch
print(f"CUDA available: {torch.cuda.is_available()}")
print(f"GPU: {torch.cuda.get_device_name(0)}")
See Also¶
- Jupyter Command Reference - All commands and flags
- Jupyter Recordings - Watch command demos
- nvidia-python - Base ML container
- GPU Setup - GPU configuration